메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양재완 (울산대학교 전기공학부) 이영두 (울산대학교 전기공학부) 구인수 (울산대학교 전기공학부)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제18권 제2호
발행연도
2018.1
수록면
185 - 195 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 산업현장에서 기계의 자동화가 크게 가속화됨에 따라 자동화 기계의 관리 및 유지보수에 대한 중요성이 갈수록 커지고 있다. 자동화 기계에 부착된 센서의 고장이 발생할 경우 기계가 오동작함으로써 공정라인 운용에 막대한 피해가 발생할 수 있다. 이를 막기 위해 센서의 상태를 모니터링하고 고장의 진단 및 분류를 하는 것이 필요하다. 본 논문에서는 센서에서 발생하는 대표적인 고장 유형인 erratic fault, drift fault, hard-over fault, spike fault, stuck fault를 기계학습 알고리즘인 SVM과 CNN을 적용하여 검출하고 분류하였다. SVM의 학습 및 테스트를 위해 데이터 샘플들로부터 시간영역 통계 특징들을 추출하고 최적의 특징을 찾기 위해 유전 알고리즘(genetic algorithm)을 적용하였다. Multi-class를 분류하기 위해 multi-layer SVM을 구성하여 센서 고장을 분류하였다. CNN에 대해서는 데이터 샘플들을 사용하여 학습시키고 성능을 높이기 위해 앙상블 기법을 적용하였다. 시뮬레이션 결과를 통해 유전 알고리즘에 의해 선별된 특징들을 사용한 SVM의 분류 결과는 모든 특징이 사용된 SVM 분류기 보다는 성능이 향상되었으나 전반적으로 CNN의 성능이 SVM보다 우수한 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0