메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jun Ha Sohn (Chungnam National University) Seunghwa Oh (Chungnam National University) Chang-Ho Lee (Chungnam National University) Sung-Soo Kim (Chungnam National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
1,151 - 1,154 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Teaching human motion to a humanoid social robot is important because it enables a humanoid social robot to interact with humans more naturally and in a friendly manner. Recently, a depth camera-based human motion teaching has been developed. However, inverse kinematic analysis using human motion skeletal data obtained from the depth camera is not general but rather robot structure-dependent. Thus, in this paper, we present a more general approach to compute joint angles from the skeletal data obtained from a depth camera using a recursive inverse kinematic algorithm. With a known base body orientation, each joint angle is recursively computed from the base body (torso) to the tree end body (robot hand). To validate the proposed recursive inverse kinematic algorithm, simulations of a humanoid robot model have been carried out using the RecurDyn multibody analysis software. The virtual humanoid robot consists of two 6 DOF arms and a 2DOF waist. The human upper body motion when walking has been captured using a Microsoft Azure Kinect depth camera. The hand motion from the depth camera and that from the simulation have been compared to investigate the effectiveness of the proposed algorithm.

목차

Abstract
1. INTRODUCTION
2. ACQUISITION OF HUMAN MOTION DATA USING A DEPTH CAMERA
3. RECURSIVE INVERSE KINEMATICS
4. ALGORITHM VALIDATION WITH A VIRTUAL HUMANOID MODEL
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001568800