메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이주영 (한국전자통신연구원) 정세윤 (한국전자통신연구원) 최진수 (한국전자통신연구원)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 추계학술대회
발행연도
2020.11
수록면
151 - 154 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
뉴럴렛 기술이 발전과 함께 다양한 분야에서 획기적인 성능 향상이 이루어지고 있다. 이미지 압축 분야에서도 기존의 전통적인 툴 체인 구조의 압축 방식에서 벗어나 종단간(end-to-end) 뉴럴렛 기반의 압축 기술에 대한 연구가 활발히 이루어지고 있다. 특히 최근 네트워크를 통해 변환된 피쳐 데이터의 엔트로피를 최소화하는 방식에 대한 연구가 활발히 이루어지고 있으며, 이에 기반한 최근의 연구는 VVC 화면 내 코딩 기술보다 우수한 코딩 효율성을 제공하고 있다. 그러나 변환된 피쳐 데이터에 대한 특성 분석은 부족한 실정이며, 이에 본 논문에서는 엔트로피 최소화 기반 종단간 이미지 압축 네트워크의 피쳐 공간 데이터에 대한 공간적(spatial) 상관관계와 채널간(inter-channel) 상관관계(correlation)를 분석하고, 나아가 최근 제안된 종단간 이미지 압축 네트워크의 문맥 기반 예측 기능을 통해 잔존하는 데이터 중복성이 효과적으로 제거됨을 보인다.

목차

요약
1. 서론
2. 배경: 엔트로피 최소화 기반 종단간 뉴럴렛 이미지 압축기술
3. 피쳐 공간 상관관계 분석
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001483030