메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jong-Wouk Kim (Kangwon National University) Juhong Namgung (Kangwon National University) Yang-Sae Moon (Kangwon National University) Mi-Jung Choi (Kangwon National University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
377 - 380 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, malware is widely distributed by combining recent technologies such as packing, encoding and obfuscation to bypass anti-virus software. These kinds of technologies allow malware to survive longer, infect various computers and devices for longer periods of time, create a number of mutated malware, and make experts spend longer to analyze malware. Packers disrupt the reverse engineering process, making it difficult for security researchers to analyze new or unknown malware. Thus, we need to analyze as many malware as possible by first detecting the packed malware and analyzing not-packed malware, and then unpack the packed malware. Previously, the packing detection methods were based on mainly signature and entropy detection. However, these methods have increased the undetected rate with the appearance of custom packers. Due to these problems, there have been many research efforts on machine learning-based malware packing detection and classification. In this paper, we present an extensive experimental comparison of these machine learning-based algorithms. In particular, we extract a total of 13 important features and considers eight machine learning algorithms to detect the packing of malware. Experimental results show that we can also detect well malware packed by custom packers which did not studied in previous studies.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. FEATURE SELECTION AND DESCRIPTION
IV. EXPERIMENTAL COMPARISON
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678646