메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jiwon Bang (Kangwon National University) Mi-Jung Choi (Kangwon National University)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
322 - 325 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the development of various technologies such as high-speed Internet and SNS dissemination, there have been many fields that require processing of big data generated in real time. Accordingly, real-time streaming data processing technology has been developed, and representative platforms include Apache Storm, Apache Spark, and Hadoop. These processing technologies provide scalability to configure distributed systems using multiple servers because they vary in performance, such as throughput and processing speed, depending on the server environment, but the more the number of servers, the more difficult it is to manage. To solve this problem, a problem can be solved by using a docker, a kind of virtualization system that provides ease of expansion. However, there is a place to maintain a native environment without using Docker due to the problem that performance may be reduced, which is a disadvantage of all virtualization systems. In this paper, we build Apache Storm and Apache Spark, which are real-time data processing systems in Docker and Native environments and conduct performance measurements through experiments processing JSON-format data to verify how much performance decreases in Docker environments.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORKS
Ⅲ. STREAMING BENCHMARK DESIGN
Ⅳ. TEST
Ⅴ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678813