메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조영인 (서울대학교) 남소현 (서울대학교) 우종훈 (서울대학교)
저널정보
(사)한국CDE학회 한국CDE학회 논문집 한국CDE학회 논문집 제26권 제2호
발행연도
2021.6
수록면
81 - 92 (12page)
DOI
10.7315/CDE.2021.081

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Rule-based heuristic algorithms and meta-heuristic algorithms have been studied to solve the scheduling problems of production systems. In recent research, reinforcement learning-based adaptive scheduling algorithms have been studied to solve complex problems with high-dimensional and vast state space. A production system in shipyards is a high-variable system where various production factors such as space, workforce, and resources are related. Adaptive scheduling according to the changes in the production system and surrounding environment must be performed in shipyards. In this paper, the main focus was on building a basic reinforcement learning model for scheduling problems of shipyards. A simplified model of the panel block shop in shipyards was assumed and the optimal policy for determining the input sequence of blocks was learned to reduce the flow time. The open source-based DES simulation kernel Simpy was incorporated into the environment of the reinforcement learning model.

목차

ABSTRACT
1. 서론
2. 강화학습
3. 문제 정의
4. 학습 결과
5. 결론 및 향후 연구
References

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-001749383