메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강건하 (Epozen’s research institute) 손정모 (Epozen’s research institute) 심건우 (Epozen’s research institute)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제8호(통권 제209호)
발행연도
2021.8
수록면
23 - 30 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.

목차

[Abstract]
[요약]
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0