메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정종진 (대진대학교) 김지연 (대진대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제18권 제11호
발행연도
2020.1
수록면
259 - 266 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
과거 인공지능 분야에서는 지식 기반의 전문가 시스템 및 머신러닝 알고리즘들을 금융 분야에 적용하는 연구가 꾸준하게 수행되어 왔다. 특히 주식에 대한 지식 기반의 시스템 트레이딩은 이제 보편화되었고, 최근에는 대용량 데이터에 기반한 딥러닝 기술을 주가 예측에 적용하기 시작했다. 이중 LSTM은 시계열 데이터에 대한 검증된 모델로서 주가 예측에도 적용되고 있다. 본 논문에서는 주가 예측 모델로서 LSTM을 적용할 때 성능향상을 위해 고려해야 할 복잡한 매개변수 설정과 적용 함수들에 대해 적합한 조합 방법을 제안하도록 한다. 크게 가중치와 바이어스에 대한 초기화 대상과 설정 방법, 과적합을 피하기 위한 정규화 적용 대상과 설정 방법, 활성화 함수 적용 방법, 최적화 알고리즘 선택 등을 제시한다. 이 때 나스닥 상장사들에 대한 대용량 데이터를 바탕으로 각각의 방법들을 적용하여 정확도를 비교하면서 평가한다. 이를 통해 주가 예측을 위한 LSTM 적용 시 최적의 모델링 방법을 실증적인 형태로 제안하여 현실적인 시사점을 갖도록 한다. 향후에는 입력 데이터의 포맷과 길이, 하이퍼파라미터들에 대한 성능평가를 추가 수행하여 주요 설정 항목들의 조합에 대한 일반화 연구를 수행하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0