메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이성진 (전남대학교) 윤준석 (전남대학교) 박선후 (전남대학교) 유석봉 (전남대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제11호
발행연도
2021.11
수록면
1,486 - 1,494 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
문자 인식은 스마트 주차, text to speech 등 최근 다양한 플랫폼에서 필요로 하는 기술로써, 기존의 방법과 달리 새로운 시도를 통하여 그 성능을 향상시키려는 연구들이 진행되고 있다. 그러나 문자 인식에 사용되는 이미지의 품질이 낮을 경우, 문자 인식기 학습용 이미지와 테스트 이미지간에 해상도 차이가 발생하여 정확도가 떨어지는 문제가 발생된다. 이를 해결하기 위해 본 논문은 문자 인식 모델 성능이 다양한 품질 데이터에 대하여 강인하도록 이미지 초해상도 및 문자 인식을 결합한 통째학습 신경망을 설계하고, 대안적 통째학습 알고리즘을 구현하여 통째 신경망 학습을 수행하였다. 다양한 문자 이미지 중 차량 번호판 이미지를 이용하여 대안적 통째학습 및 인식 성능 테스트를 진행하였고, 이를 통해 제안하는 알고리즘의 효과를 검증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구 동향
Ⅲ. 제안 방법
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000031792