메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jong -Joo Kim (University of Southern California) Haneul Choi (Yonsei University) Bonghoon Jeong (Ajou University) Taeyeon Kim (Yonsei University)
저널정보
한국생태환경건축학회 한국생태환경건축학회 학술발표대회 논문집 한국생태환경건축학회 2021년도 추계국제학술발표대회 논문집 제21권 제2호
발행연도
2021.11
수록면
49 - 56 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
HVAC has become an essential component of modern building systems, increasing thermal comfort and promoting high-quality human life. However, the uncontrolled use of such technologies often leads to excessive waste of energy and creates an undesirable thermal environment that negatively affects human health. Thus, research in data-driven thermal comfort prediction models have been fervidly conducted in a hope of developing accurate and efficient thermal comfort control systems. In continuation of such studies, many state-of-the-art prediction algorithms and methods have been proposed, but not many studies address the essential problem of collecting large-sized thermal comfort data sets for practical use.
In this study, three high-performance data-driven prediction models, Random Forest, CNN_LSTM, and TL-CNN_LSTM, were used to test the applicability of using small thermal comfort datasets to control the thermal environment. As a result, the overall prediction performance of the selected models was observed to be more reliable than that of Fanger’s Predicted Mean Vote (PMV) model, but the highest results did not still exceed 45% in accuracy. Given the small size and subjective nature of the thermal comfort dataset, is still premature to apply such models to thermal comfort control operations. Given the subjective nature of the thermal comfort dataset, it is still premature to do the thermal comfort prediction modelling using a small dataset.

목차

ABSTRACT
1. Introduction
2. Methodology
3. Experiment results and analysis
4. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0