메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전지운 (상명대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제32권 제2호
발행연도
2019.1
수록면
73 - 81 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 디지털 콘텐츠 중 E-Book과 웹 소설이 증가하고 있다. 삽화는 텍스트 콘텐츠에서 독자의 이해를 도 울 수 있다. 따라서 텍스트 콘텐츠를 분석하여 자동으로 삽화를 생성하는 여러 접근방법이 등장했다. 먼저 규칙 기반 접근방법은 문장을 분석하는 규칙과 분석된 문장 구조를 삽화로 변환하는 규칙을 모두 활용하여 삽화를 생성한다. 그러나 정해진 규칙에서 벗어나면 삽화를 생성하지 못 할 수도 있다는 단점이 있다. 다음 으로 통계 기반 접근방법은 통계를 기반으로 후보 중 가장 가능성이 높은 삽화를 생성한다. 그러나 통계 기 반 접근방법은 사람이 추출한 정보에 강하게 의존한다는 단점이 있다. 본 연구는 사람이 아닌 시스템이 자동 으로 정보를 추출하는 딥러닝을 활용한 삽화 생성 시스템을 제안한다. 제안하는 시스템은 형태소 분석기, 개 체명 인식기, 의존 구문 구조 분석기로 이루어져있다. 동화 "빨간모자"를 통해 평가하였고, 총 99문장 중 삽 화 생성이 가능한 문장이 28문장, 삽화 생성이 불가능한 문장이 71문장이었다. 삽화 생성이 불가능한 문장의 경우 대사가 41문장, 불명확한 주어가 2문장, 그리고 표현이 불가능한 서술어가 28문장이었다. 제안하는 시스 템이 올바른 삽화를 생성한 문장은 23문장, 부적절한 삽화를 생성한 문장은 2문장, 삽화를 생성하지 않은 문 장은 74문장으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0