메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhamad Dwisnanto Putro (University of Ulsan) Duy-Linh Nguyen (University of Ulsan) Kang-Hyun Jo (University of Ulsan)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
988 - 993 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Human-robot interaction drives the need for vision technology to recognize user expressions. Convolutional Neural Networks (CNN) has been introduced as a robust facial feature extractor and can overcome classification task. However, it is not supported by efficient computation for real-time applications. The work proposes an efficient CNN architecture to recognize human facial expressions that consist of five stages containing a combination of lightweight convolution operations. It introduces the efficient contextual extractor with a partial transfer module to suppress computational compression. This technique is applied to the mid and high-level features by separating the channel-based input features into two parts. Then it applies sequential convolution to only one part and combines it with the previous separated part. A shuffle channel group is used to exchange the information extracted. The structure of the entire network generates less than a million parameters. The CK+ and KDEF datasets are used as training and test sets to evaluate the performance of the proposed architecture. As a result, the proposed classifier obtains an accuracy that is competitive with other methods. In addition, the efficiency of the classifier has strongly suitable for implementation to edge devices by achieving 43 FPS on a Jetson Nano.

목차

Abstract
1. INTRODUCTION
2. PROPOSED ARCHITECTURE
3. IMPLEMENTATION SETUP
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0