메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이지민 (순천향대학교) 전예림 (순천향대학교) 이지선 (순천향대학교) 우지영 (순천향대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 동계학술대회 논문집 제30권 제1호
발행연도
2022.1
수록면
335 - 336 (2page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 시간대와 대화 주제를 활용하여 카테고리별로 적절한 SNS 광고 시간대 예측 방법을 제시한다. 위의 분석으로 광고주들에게 적절한 광고시간을 제안할 수 있다. 연관규칙분석 알고리즘인 apriori를 사용하였다. 주제는 상거래(쇼핑), 미용과 건강, 시사/교육, 식음료, 여가생활로 추려서 분석하였다. 연관분석 결과, 미용과 건강이 18시, 17시, 16시에 가장 활발히 대화를 나누었다. 상거래(쇼핑)이 14시, ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0