메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
문재원 (한국전자기술연구원) 유미선 (한국전자기술연구원) 오승택 (한국전자기술연구원) 금승우 (한국전자기술연구원) 황지수 (한국전자기술연구원) 이지훈 (한국전자기술연구원)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 동계학술대회 논문집 제30권 제1호
발행연도
2022.1
수록면
399 - 402 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 불완전한 시계열 데이터를 활용하기 전 데이터를 선별하여 활용하는 방법을 소개한다. 시계열 데이터의 품질은 수집 네트워크와 수집 기기의 시간적 변화와 같은 가변적 상황에 의존적이므로 불규칙적으로 이상 혹은 누락 데이터가 발생한다. 이때 에러를 포함하였다는 이유로 일괄적으로 데이터를 제거하여 활용하지 않거나, 혹은 누락 데이터의 구간을 조건 없이 복원하여 활용한다면 원하지 않는 결과를 초래할 수 있다. 제안하는 방법은 시계열 데이터의 구간에 대한 누락 데이터의 통계적 정보를 축출하고 이에 기반하여 활용 목적과 활용 가능한 품질의 기준에 부합하지 않는다면 활용 불가능한 데이터라고 판별하고 미리 분석 등의 데이터 활용 시 자동 제외하는 구조를 제안하고 실험하였다. 제안하는 방법은 활용 목적과 상황에 적응적으로 누락 값을 포함하는 데이터의 빠른 활용 판단이 가능하며 보다 나은 분석 결과를 얻을 수 있다.

목차

요약
I. Introduction
II. 누락 데이터 처리
III. 데이터 선별 보완 방법
IV. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0