메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Henar Mike Canilang (Kumoh National Institute of Technology) Chigozie Uzochukwu Udeogu (Kumoh National Institute of Technology) James Rigor Camacho (Kumoh National Institute of Technology) Erick Valverde (Kumoh National Institute of Technology) Angela Caliwag (Kumoh National Institute of Technology) Wansu Lim (Kumoh National Institute of Technology)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2021 대한인간공학회 추계학술대회 및 국제심포지엄
발행연도
2021.11
수록면
126 - 126 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study aims to integrate brain computer interface (BCI) to edge AI devices for real-time EEG signal processing applications. For the specific implementation in this paper, we applied edge AI device-based EEG signal processing for emotion recognition. Background: The emergence of Electroencephalogram (EEG) based applications for intelligent applications is projected to have rapid advancements in the future. The BCI system enables efficient brain signal acquisition. Current intelligent convergence of EEG based applications includes brain signal processing integrated to deep learning models. It is expected that this convergence in intelligent EEG based applications will push through to on-device local processing such as edge AI devices for portability in state-of-the-art applications. The portability and practical usage of these systems in real-world applications could lead to the development and deployment of many other advanced embedded systems for EEG-based applications. Systems that can run locally on the edge without needing to be connected to a mobile network. Edge AI devices are the leading-edge computing platforms that process data locally to overcome the current constraints of IoT application. This paves way to the integration of edge-based processing as the computing paradigm to process and acquire EEG signals. Owing to the current research advancement for both EEG and edge applications, this paper aims to propose one of the many systematic applications of deploying edge-based EEG using a brain computer interface. Method: The input for this edge-based EEG signal processing is through the BCI interfaced to the edge AI device. The edge AI device deployed with a deep learning model for specific applications locally processes the acquired signal. These acquired signals are valuable for training deep learning models to realize practical applications at the edge. The processed EEG signals enable the system response of the system such as rapid emotion recognition. Results: Varying E ... 전체 초록 보기

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0