메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yurin Lee (Kookmin University) Hyunchul Ahn (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제3호(통권 제216호)
발행연도
2022.3
수록면
201 - 207 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 영화 추천 시 평점뿐 아니라 사용자 리뷰도 함께 사용하는 영화 추천 모형을 제안한다. 제안 모형은 고객의 선호도를 다기준 관점에서 이해하기 위해, 사용자 리뷰에 속성기반 감성분석을 적용하도록 설계되었다. 이를 위해, 제안 모형은 고객이 남긴 리뷰를 다기준 속성별로 나누어 암시적 속성을 파악하고, BERT를 통해 이를 감성 분석함으로써 각 사용자가 중요시 생각하는 속성을 선별적으로 협업필터링에 결합하여 추천 결과를 생성한다. 본 연구에서는 유용성을 검증하기 위해 제안모형을 실제 영화 추천 사례에 적용해 보았다. 실험결과 전통적인 협업필터링보다 제안 모형의 추천 정확도가 향상되는 것을 확인할 수 있었다. 본 연구는 개인의 특성을 고려하여 모형을 선별하여 사용하는 새로운 접근법을 제시하였고, 속성 각각에 대한 평가 없이 리뷰로부터 여러 속성을 파악할 수 있는 방법을 제시했다는 측면에서 학술적, 실무적 의의가 있다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Empirical Validation
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0