메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동현 (국립한경대학교) 이인호 (국립한경대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제3호
발행연도
2022.3
수록면
430 - 435 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 하나의 매크로 기지국과 다수의 소형 기지국들로 구성된 이종 네트워크 (Heterogeneous Network, HetNET) 시스템에서 비직교 다중 접속 (Non-Orthogonal Multiple Access, NOMA) 기술을 고려한다. 여기서, NOMA 신호에 대하여 완벽한 순차적 간접 제거를 가정한다. 본 논문에서는 이러한 NOMA 기반의 이종 네트워크에서 데이터 전송률을 최대화하기 위하여 딥러닝 기반의 사용자 및 전력 할당 기법을 제안한다. 특히, 제안하는 기법은 부하 분산을 위한 심층신경망(Deep Neural Network, DNN) 기반의 사용자 할당 과정과 할당된 사용자에 대한 데이터 전송률의 최대화를 위한 DNN 기반의 전력 할당 과정을 포함한다. 기지국과 사용자간 경로 손실과 레일레이 페이딩 채널을 가정한 시뮬레이션을 통해 제안하는 기법의 성능을 평가하고, 기존의 최대 신호 대 간섭 및 잡음비(Max-Signal-to-Interference-plus-Noise Ratio, Max-SINR) 기법의 성능과 비교한다. 성능 비교를 통해서 제안된 기법이 기존의 Max-SINR 기법보다 높은 데이터 전송률을 제공하는 것을 보여준다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 시스템 모델
Ⅲ. 심층신경망 구조 및 학습과정
Ⅳ. 수치적 결과
Ⅴ. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001159286