메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Daewon Chung (Keimyung University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.41 No.1
발행연도
2022.5
수록면
37 - 45 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The spread of COVID-19 prediction is one of the very important tasks in determining quarantine policies in terms of a pandemic. With the recent development of artificial intelligence, the use of various prediction methods has been proposed. In addition, various data on the spread of COVID-19 are provided by each country. However, despite abundant data availability because of different prevention policies and situations in each country, the use of data available through machine learning to predict COVID-19 situations in certain countries is still limited. To leverage sufficient data for the prediction using deep learning, we attempted to make predictions via regional spread data in a country for weekly predictions of COVID-19 growth over time using long short-term memory (LSTM) methods. In addition, the numbers of confirmed cases, recoveries, and deaths, and the variable population were noted to track the correlation with the accuracy of prediction. The accuracy assessment of the presented model was based on root mean square error, mean absolute percentage error, and graph visualization. We believe that achieving it accurate predictions using biased data, such as a sharp increase in the numbers of confirmed cases because of highly contagious variants, including omicron variants, is not easy. However, LSTM can predict patterns similar to that of actual data using various variables and regional data.

목차

ABSTRACT
1. Introduction
2. Related Works
3. Methods
4. Experiment and Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-047-001343705