메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정민혁 (명지대학교) 김상균 (명지대학교) 이진영 (한국전자통신연구원(ETRI)) 추현곤 (한국전자통신연구원(ETRI)) 이희경 (한국전자통신연구원(ETRI)) 정원식 (한국전자통신연구원(ETRI))
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제3호
발행연도
2022.5
수록면
308 - 317 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기반 머신 비전 기술을 이용한 영상분석 과정에서 전송되고 저장되는 방대한 양의 동영상 데이터의 용량을 효율적으로 줄이기 위한 연구들이 진행 중이다. MPEG(Moving Picture Expert Group)은 VCM(Video Coding for Machine)이라는 표준화 프로젝트를 신설해 인간을 위한 동영상 부호화가 아닌 기계를 위한 동영상 부호화에 대한 연구를 진행 중이다. 그 중 한 번의 영상 입력으로 여러 가지 태스크를 수행하는 멀티태스크에 대한 연구를 진행하고 있다. 본 논문에서는 효율적인 멀티태스크를 위한 파이프라인을 제안한다. 제안하는 파이프라인은 물체탐지를 선행해야 하는 각 태스크들의 물체탐지를 모두 수행하지 않고 한번만 선행하여 그 결과를 각 태스크의 입력으로 사용한다. 제안하는 멀티태스크 파이프라인의 효율성을 알아보기 위해 입력영상의 압축효율, 수행시간, 그리고 결과 정확도에 대한 비교 실험을 수행한다. 실험 결과 입력 영상의 용량이 97.5% 이상 감소한데 반해 결과 정확도는 소폭 감소하여 멀티태스크에 대한 효율적인 수행 가능성을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 아키텍쳐
Ⅲ. 실험 간 교환되는 데이터
Ⅳ. 실험 환경 및 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0