메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
차준형 (한양대학교) 김기훈 (한양대학교) 허건수 (한양대학교)
저널정보
한국자동차공학회 한국자동차공학회 춘계학술대회 2022 한국자동차공학회 춘계학술대회
발행연도
2022.6
수록면
385 - 388 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
ADAS and Autonomous Driving is a technology that helps drivers safely maneuver through traffic, and prevents accidents from happening by evading potential dangers. This technology is currently being actively studied worldwide. To detect potential dangers on road and decide actions to evade, the vehicle has to predict nearby objects’ movements correctly. Vehicle path prediction can be categorized into two large groups : physics based model and network based model. Physics based model predicts short term paths with high precision. This model doesn’t take into account the context of the environment, thereby is inappropriate for long term path prediction. Network based model receives the context of the scene as an input, so it performs better at predicting long term paths. But physical movement of the vehicle is not taken into account when generating paths, making unrealistic predictions. In this paper, path prediction algorithm considering both dynamic characteristics of vehicle and scene context is proposed for short-term, long-term prediction. Constant velocity, constant turn rate and velocity model is used in Extended Kalman Filter for interacting multiple models algorithm to predict physics based prediction, and time series data is used in LSTM for Network based prediction. Two predicted outputs are then combined by a weighting function in respect to prediction time. The proposed algorithm is verified by Argoverse opendataset, and showed enhanced results compared to individual models’ results.

목차

Abstract
1. 서론
2. 경로 예측 알고리즘
3. 시뮬레이션 결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0