메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
선민혁 (한국과학기술원) 백동희 (한국과학기술원) 공승현 (한국과학기술원)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제30권 제8호
발행연도
2022.8
수록면
635 - 647 (13page)
DOI
10.7467/KSAE.2022.30.8.635

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Object detection is one of the most crucial functions for autonomous driving because path planning, obstacle avoidance, and numerous other functions rely on the acquired information regarding the positions of objects on the road. To enable accurate object detection, numerous works utilize lidar as the primary sensor since it can accurately acquire 3D measurements and it is robust to adverse environmental conditions such as poor illumination. In this work, we aim to comprehensively review deep learning-based object detection using lidar, which has shown remarkable detection performance on various datasets. First, we explain the general concepts of deep learning-based lidar object detection along with the datasets and benchmarks that are commonly used in existing works. We then thoroughly discuss the latest state-of-the-art neural networks for lidar object detection. Finally, we provide suggestions on how to employ these networks in an autonomous driving system.

목차

Abstract
1. 서론
2. 용어 정의
3. 라이다 포인트 클라우드 데이터셋
4. 라이다 객체 인식 신경망
5. 자율주행을 위한 신경망 활용
6. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0