메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송민석 (공군) 임재성 (아주대학교) 이민우 (아주대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제8호
발행연도
2022.8
수록면
1,222 - 1,230 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 변조 기법을 사용하여 저피탐 능력을 갖춘 신호원들이 증가하면서, 신호의 변조 방식을 분류하는 연구가 꾸준히 진행되고 있다. 최근 신호 간섭이나 잡음 환경에서 수신 신호 분류의 성능 개선을 위하여 전처리 과정으로 FFT를 이용하는 CNN(Convolutional Neural Network) 딥러닝 기법이 제안되었다. 하지만 윈도우가 고정되는 FFT의 특성상 탐지 신호의 시간에 따른 변화를 정확히 분류해내지 못한다. 따라서 본 논문에서는 시간 영역과 주파수 영역에서 높은 해상도를 가지고 또한 다양한 유형의 신호를 시간 및 주파수 영역에서 동시에 표현할 수 있는 웨이블릿 변환(wavelet transform)을 전처리 과정으로 사용하는 CNN 모델을 제안한다. 시뮬레이션을 통해 제안하는 웨이블릿 변환 방식이 FFT 변환 방식에 비해 정확도와 학습 속도 측면에서 SNR 변화에 무관하게 우수한 성능을 보이고, 특히 낮은 SNR일 때 더욱 큰 차이를 보임을 입증하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안하는 웨이블릿 변환 기반 CNN 기법
Ⅲ. 성능 분석
Ⅳ. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001639745