메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
문예린 (강남대학교) 김종현 (강남대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 하계학술대회 논문집 제30권 2호
발행연도
2022.7
수록면
563 - 566 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 증강현실에서 객체 증강 시, 특징점과 GPS를 이용하여 증강 위치를 효율적으로 보간할 수 있는 ICP(Iterative closest point) 매칭 기법을 제안한다. 다양한 환경에서 제한받지 않고 객체를 증강하기 위해 일반적으로 마커리스(Markerless) 방식을 사용하며, 대표적으로 평면 검출과 페이스 검출을 사용한다. 이는 현실과 자연스러운 동기화를 위한 것으로 계산은 작지만, 인식의 범위가 넓기 때문에 증강 위치에 대한 오차가 존재한다. 이러한 작은 오차는 특정 산업에서는 치명적일 수 있으며, 특히 건설이나 의료시설에서 발생하면 큰 사고로 이어진다. 객체를 증강 시킬 때 해당 환경에 대한 점 구름(Point cloud)을 수집하여 데이터베이스에 저장한다. 본 논문에서는 관측되는 점 구름과의 오차를 줄이기 위해 ICP 매칭 기법을 사용하며, 실린더 기반의 각도 보간을 이용하여 계산량을 줄인다. 결과적으로 특징점과 GPS를 이용하여 ICP 매칭 기법을 통해 효율적으로 처리함으로써, 증강 위치에 대한 정확도가 개선된 증강 방식을 보여준다.

목차

요약
Ⅰ. Introduction
Ⅱ. The Proposed Scheme
Ⅲ. Experiment Result
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0