메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정다운 (부경대학교) 정성훈 (부경대학교) 김재윤 (부경대학교) 정지훈 (부경대학교) 공경보 (부경대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 추계학술대회
발행연도
2022.11
수록면
183 - 186 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인공지능 기반 객체 탐지 기술이 발전함에 따라 영상 감시, 얼굴 인식, 로봇 제어, IoT, 자율주행, 제조업, 보안 등 다양한 분야에 활용되고 있다. 이에 본 논문은 발전된 객체 탐지 알고리즘을 이용하여 비전문가에겐 생소한 컴퓨터나 전기 장치 등의 "단자(terminal)" 모양을 구별하는 방법을 제안한다. 이를 위해 객체 탐지 프로그램인 You Only Look Once (YOLO) 알고리즘을 이용하여 입력한 단자들의 모양을 검출하는 알고리즘을 구성하였다. 일상에서 쉽게 볼 수 있는 단자들의 이미지(VGA, DVI, HDMI, DP, USB-A, USB-C)를 라벨링하여 데이터셋을 구축하였고, YOLOv4와 YOLOv5 두 버전의 알고리즘을 사용하여 성능을 검증하였다. 실험 결과 mean Average Precision(mAP) 기준 최대 92.9%의 정확도를 얻을 수 있었다. 전기 장치에 따라 단자의 모양이 다양하고, 그 종류 또한 많기 때문에 본 연구가 방송 기술 등의 여러 분야에 응용될 것으로 기대된다.

목차

요약
I. 서론
II. Background
Ⅲ. 방법
Ⅳ. 실험 결과
Ⅴ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0