메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Min-Hyuck Lim (Sang Myung University) Joon-Young Oh (Sang Myung University) Seung-Oh Jung (Sang Myung University) Jun-Moo Heo (Sang Myung University) Hyun-Joo Park (Sang Myung University)
저널정보
한국엔터테인먼트산업학회 한국엔터테인먼트산업학회 학술대회 논문집 한국엔터테인먼트산업학회 2022년도 추계학술대회 논문집
발행연도
2022.11
수록면
63 - 67 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the spread of CCTV, various technologies have been developed for identification of the number of vehicles violating the law and for accurate judgment of the situation. The development of computer vision technology for processing recognized images ensures that there is no damage caused by erroneous situational judgment due to misrecognition. Recently, artificial intelligence deep learning technologies have been introduced to accurately recognize the number of vehicles that violate traffic laws using various image processing techniques. With the rapid change of society, traffic laws are also evolving at a rapid pace. We propose a deep learning algorithm for accurate situation determination of recently revised traffic laws. The proposed algorithm outputs accurate information after detecting a violation, extracting the detected vehicle license plate using image processing, and performing a number recognition process with a pre-learned cnn model. The cnn model for license plate recognition used YOLO. The YOLO learning model was used to extract areas by processing the images of vehicles, crosswalks, traffic lights, and pedestrians. In order to increase the accuracy of model validation, if the accuracy is less than 80%, it is judged that the bias is high and the image preprocessing is performed again or the loss value is reduced. Find the optimal model. In the future, it can be used as a recognition system not only in automobiles but also in various fields such as two-wheeled vehicles.

목차

Abstract
I. Introduction
II. Method
III. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-691-000223959