메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyebin Park (Chonnam National University) Jeong-Soo Park (Chonnam National University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.41 No.2
발행연도
2022.11
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
COVID-19 is a pathogen called SARS-CoV-2, an RNA virus that can infect various animals, including humans. As COVID-19 spread globally, the World Health Organization upgraded it to a pandemic in March 2020. In addition to solving the problem of shortage of medical personnel, rapid and accurate classification of infected patients emerged as an important issue. Therefore, we propose a deep learning-based chest X-ray image reading model that can notify the doctor whether the patient is infected. The goal is to achieve multiclass classification, which not only classifies COVID-19 infections, but also other lung diseases to help the medical community. The proposed method is a combination model. It involves pre-processing the chest X-ray image using the image augmentation method and various convolutional neural network (CNN) models. The purpose of the proposed method is to classify COVID-19, normal people, and viral pneumonia appropriately. Overall, 15,153 X-ray images were used in the study. By using the proposed method, we obtained a model with high accuracy through improved image data. Characteristically, some models tend to detect COVID-19 and pneumonia properly. Finally, an ensemble model was created using models made by the proposed method. Eventually, we obtained a high accuracy (0.981) model for detecting infections appropriately.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0