메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태경 (Kangwon National University) 조현종 (Kangwon National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제72권 제3호
발행연도
2023.3
수록면
428 - 433 (6page)
DOI
10.5370/KIEE.2023.72.3.428

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The need for renewable energy is increasing due to problems such as environmental pollution and resource depletion. Solar energy is the largest type of renewable energy and is increasing. However, when a micro-crack is formed in a solar cell, it greatly affects the photovoltaic power generation system. This degrades the performance of the solar power system and can be easily damaged. In this paper, solar cell defects were detected through Electroluminescent (EL) images. The Vision Transformer-Huge model was used to extract solar cell defect features. In addition, the CIFAR-10 augmentation policy and Imagenet augmentation policy included in Auto-augment were used to increase the performance of the model for the small dataset. When using the augmentation policy, the characteristics of the solar cell defect may disappear from the data, so filtering was performed with the model learned from the original data. For filtering, only images with a prediction probability of 70% or more of augmented images through the Soft-max function were used. When comparing the performance of the proposed methods and the method learned with the original data, it showed excellent performance. As a result, the proposed model showed a performance improvement of about 5% based on accuracy, and a recall value of about 93% was obtained.

목차

Abstract
1. 서론
2. 본론
3. 연구 결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-560-000445215