메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Muditha Tissera (University of Kelaniya) Ruvan Weerasinghe (University of Colombo)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.20 No.2
발행연도
2022.6
수록면
113 - 124 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
News in the form of web data generates increasingly large amounts of information as unstructured text. The capability of understanding the meaning of news is limited to humans; thus, it causes information overload. This hinders the effective use of embedded knowledge in such texts. Therefore, Automatic Knowledge Extraction (AKE) has now become an integral part of Semantic web and Natural Language Processing (NLP). Although recent literature shows that AKE has progressed, the results are still behind the expectations. This study proposes a method to auto-extract surface knowledge from English news into a machine-interpretable semantic format (triple). The proposed technique was designed using the grammatical structure of the sentence, and 11 original rules were discovered. The initial experiment extracted triples from the Sri Lankan news corpus, of which 83.5% were meaningful. The experiment was extended to the British Broadcasting Corporation (BBC) news dataset to prove its generic nature. This demonstrated a higher meaningful triple extraction rate of 92.6%. These results were validated using the inter-rater agreement method, which guaranteed the high reliability.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODOLOGY
IV. RESULTS AND DISCUSSION
V. FUTURE WORK
VI. SUMMARY AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000406877