메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
기태우 (인하대학교) 김용진 (인하대학교)
저널정보
한국로지스틱스학회 로지스틱스연구 로지스틱스연구 제30권 제4호
발행연도
2022.8
수록면
79 - 90 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Global companies need to increase their competitiveness through efficient management and rapid decision-making of limited internal resources. Supply chain management(SCM) expands from raw material procurement to final customers. Due to the limitations of corporate resources and capital, accuracy of demand forecasting is essential to improve competitiveness. This study tested the artificial neural network(ANN) model to use it as a more improved demand prediction model required by material suppliers in the semiconductor industry. The predictive results of artificial neural network models and other traditional time series models such as Moving Average, Exponential Smoothing including Holt-Winter’s model, and ARIMA were compared with actual sales data. Based on this, the accuracy of the artificial neural network model according to the demand pattern of the semiconductor component industry was evaluated. The artificial neural network model predicted the highest average accuracy rate among demand prediction models and it can be expected to improve overall demand forecast accuracy which is able to contribute actual facing problem at similar supply chains. Demand forecasting is a beginning of sales and supply planning in supply chain management. This study is expected to provide one of cases at the demand forecast research due to lack of domestic research papers. It will also provide practical guidelines of real-world problem at various companies which was used actual data from semiconductor industry.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0