메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장도 (배재대학교) 박장순 (배재대학교) 이지은 (서강대학교 경영대학) 정회경 (배재대학교)
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제17권 제5호
발행연도
2022.10
수록면
795 - 805 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the rapid development of the Internet, the way consumers shop has undergone tremendous changes. Compared with traditional physical store shopping methods, online shopping methods are more convenient and faster, so e-commerce platforms are becoming more and more popular. With the increase in the number of users and products on the e-commerce platform, the information faced by users is becoming more and more diverse. To quickly find the products that users are interested in, an e-commerce recommendation system was born. The e-commerce recommendation system recommends corresponding products according to the user's preferences, which can save the user's time in selecting products and increase the user's stickiness to the e-commerce platform. Recommendation systems mainly include recommendation systems based on Hadoop MapReduce computing, recommendation systems based on Spark computing, etc. The recommendation systems based on Spark computing have the advantages of high real-time performance and computational efficiency. This paper uses big data technologies such as Hadoop, Spark, and Kafka, combined with algorithms such as collaborative filtering and K-means, to implement a personalized product recommendation system with a real-time recommendation module and an offline recommendation module. Through experimental comparison, the performance of the offline recommendation algorithm in this system is better than the traditional user-based collaborative filtering algorithm. At the same time, the experiment also proves that the Spark computing framework has higher computational efficiency than the Hadoop MapReduce computing framework.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0