메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
권다은 (한동대학교) 권지현 (한동대학교) 신예은 (한동대학교) 황민주 (한동대학교) 안민규 (한동대학교)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2022 대한인간공학회 추계학술대회 및 국제심포지엄
발행연도
2022.10
수록면
154 - 157 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective: The aim of this study is to check the difference and similarity among motor imagination, observing, and execution for Brain-Computer Interface (BCI). We investigated electroencephalography (EEG) of motor imagery (MI), observation, and execution respectively with the question that if data during motor observation (MO) and execution (ME) can be used for motor imagery Background: MI BCI can be used by users with physical limitations for communication and control purposes. However, building a classifier for motor imagery states, requires a long calibration time where brain signal data are collected. Usually, this process is difficult time for users since high attentional state is necessary which may make users tired and consequently degrade the performance of the classifier. An ergonomic supplement to the MI paradigm is needed, and easier tasks (e.g., ME and MO) may be used to solve the problem if the fundamental brain dynamics are same. Method: We collected EEG data from 20 healthy subjects during MI, MO, and ME. Each subject conducted each task (MI or MO or ME) on the left- and right-handed movements. Then event-related desynchronization/synchronization (ERD/S) of alpha rhythm and classification accuracy were investigated to compare the three different tasks. Results: We observed the ERD (decrease of alpha power) in all conditions (MI, MO, and ME). In addition, the classification accuracies were averagely MO (68.35%), MI (62.22%), ME (59.14%) which is above the chance level (50%). Conclusion: We confirmed the pattern of brain signals are similar across the three conditions, and the classification accuracy were meaningfully. This indicates that ME and MO data may be used for constructing a classifier which is usable for MI BCI.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000454365