메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤석 (한국원자력연구원) 김민준 (한국지질자원연구원) 박승훈 (인하대학교) 김건영 (한국원자력연구원)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제53권 제10호
발행연도
2021.10
수록면
3,359 - 3,366 (8page)
DOI
https://doi.org/10.1016/j.net.2021.05.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An engineered barrier system (EBS) for the deep geological disposal of high-level radioactive waste(HLW) is composed of a disposal canister, buffer material, gap-filling material, and backfill material. Asthe buffer fills the empty space between the disposal canisters and the near-field rock mass, heat energyfrom the canisters is released to the surrounding buffer material. It is vital that this heat energy is rapidlydissipated to the near-field rock mass, and thus the thermal conductivity of the buffer is a key parameterto consider when evaluating the safety of the overall disposal system. Therefore, to take into consideration the sizeable amount of heat being released from such canisters, this study investigated the thermalconductivity of Korean compacted bentonites and its variation within a temperature range of 25C to 80e90 C. As a result, thermal conductivity increased by 5e20% as the temperature increased. Furthermore,temperature had a greater effect under higher degrees of saturation and a lower impact under higher drydensities. This study also conducted a regression analysis with 147 sets of data to estimate the thermalconductivity of the compacted bentonite considering the initial dry density, water content, and variationsin temperature. Furthermore, the Kriging method was adopted to establish an uncertainty metamodel ofthermal conductivity to verify the regression model. The R2 value of the regression model was 0.925, andthe regression model and metamodel showed similar results

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0