메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최미형 ((주)경성테크놀러지) 우제승 ((주)경성테크놀러지) 홍순기 ((주)경성테크놀러지) 박준모 (동명대학교)
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제22권 제4호
발행연도
2021.12
수록면
149 - 155 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 전동이동기기를 이용하는 교통약자의 이동을 제한하는 노면 불량 요소를 딥러닝을 이용해 자동 검출하는 불량 노면객체 인식모델을 개발하고자 한다. 이를 위하여 부산시 관내 5개 지역에서 실제 전동 이동보조 장치가 이동할 것으로 예상되는 보행로, 주행로를 대상으로 하여 노면정보를 수집하였으며 이때 도로정보 수집은 데이터 수집을 보다 용이하게 하기 위하여 소형 차량을 이용 하였다. 데이터는 노면과 주변을 그 주변을 구성하는 객체로 구분하여 영상을 수집하였다. 수집된 데이터로 부터 교통약자의 이동을 저해하는 정도에 따라 분류하여 보도블럭의 파손등급 검출과 같은 일련의 인식 항목을 정의하였고, YOLOv5 딥러닝 알고리즘을 해당 데이터에 적용하여 실시간으로 객체를 인식하는 불량노면 객체 인식 딥러닝 모델을 구현 하였다. 연구의 최종단계에서 실제 주행을 통해 객체 단위로 분리 수집된 영상 데이터의 가공, 정제 및 어노테이션 과정을 수행한 후 모델 학습과 검증을 거쳐 불량노면객체를 자동으로 검출하는 딥러닝 모델의 성능 검증 과정을 진행 하였다.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0