메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전남열 (제주대학교) 이봉규 (제주대학교)
저널정보
한국소프트웨어감정평가학회 한국소프트웨어감정평가학회논문지 한국소프트웨어감정평가학회 논문지 제17권 제2호
발행연도
2021.12
수록면
75 - 81 (7page)
DOI
10.29056/jsav.2021.12.08

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
식물의 생육은 수분에 의해서 크게 좌우되기 때문에 토양이 재배하는 식물에 최적의 수분을 가지도록 조절하는 것은 중요하다. 최근 초분광영상을 통하여 식물의 생육정보를 자동으로 분석하는 연구가 진행되고 있으며 토양의 수분함량을 측정하는 것도 포함한다. 그러나 초분광의 경우 많은 분광밴드에서 나타나는 방대한데이터로 인하여 분석과정이 복잡하기 때문에 사용이 어렵다. 본 논문에서는 초분광영상의 복잡도를 합성곱신경망 (Convolution Neural Network, CNN)을 통하여 해결하는 방법을 제안한다. 제안한 방법은 대상 초분광의 전체 대역을 심층학습방법을 사용하여 자동 분석하기 때문에 각 영상에 대해 인식에 필요한 특정 대역을 찾는 노력을 할 필요가 없다. 제안 시스템의 유효성을 보이기 위해서 토양에서 얻은 초분광영상을 이용한수분함량분석 실험을 수행하고 결과를 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0