메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권범 (Dongyang Mirae University) 오태근 (Dong Seoul University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제4호(통권 제229호)
발행연도
2023.4
수록면
41 - 51 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 보행자의 걸음걸이로부터 분노 감정 검출을 위한 다중 시간 윈도 특징 추출 기술을 제안한다. 기존의 걸음걸이 기반 감정인식 기술에서는 보행자의 보폭, 한 보폭에 걸리는 시간, 보행 속력, 목과 흉부의 전방 기울기 각도(Forward Tilt Angle)를 계산하고, 전체 구간에 대해서 최솟값, 평균값, 최댓값을 계산해서 이를 특징으로 활용하였다. 하지만 이때 각 특징은 보행 전체 구간에 걸쳐 항상 균일하게 변화가 발생하는 것이 아니라, 때로는 지역적으로 변화가 발생한다. 이에 본 연구에서는 장기부터 중기 그리고 단기까지 즉, 전역적인 특징과 지역적인 특징을 모두 추출할 수 있는 다중 시간 윈도 특징 추출(Multi-Time Window Feature Extraction) 기술을 제안한다. 또한, 제안하는 특징 추출 기술을 통해 각 구간에서 추출된 특징들을 효과적으로 학습할 수 있는 앙상블 모델을 제안한다. 제안하는 앙상블 모델(Ensemble Model)은 복수의 분류기로 구성되며, 각 분류기는 서로 다른 다중 시간 윈도에서 추출된 특징으로 학습된다. 제안하는 특징 추출 기술과 앙상블 모델의 효과를 검증하기 위해 일반인에게 공개된 3차원 걸음걸이 데이터 세트를 사용하여 시험 평가를 수행했다. 그 결과, 4가지 성능 평가지표에 대해서 제안하는 앙상블 모델이 기존의 특징 추출 기술로 학습된 머신러닝(Machine Learning) 모델들과 비교하여 최고의 성능을 달성하는 것을 입증하였다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Motivation
IV. Proposed Method
V. Experimental Results
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0