메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정혜린 (중앙대학교) 임창원 (중앙대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제6호
발행연도
2019.12
수록면
795 - 835 (41page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 다양한 분야에서 ‘빅데이터’가 생성되었다. 많은 기업들은 인공지능(AI)을 기반으로 빅데이터 분석이 가능한 시스템을 구축하여 이익 창출을 시도하고 있다. 인공지능 기술을 접목함으로써 방대한 양의 데이터를 효율적으로 분석하고 효과적으로 활용하는 것은 점점 더 중요해지고 있다. 특히 재무, 조달, 생산 및 마케팅과 같은 다양한 분야에서 국가 및 기업 경영 관리에있어 최소의 오차와 최대의 정확도를 갖춘 수요예측은 절대적으로 중요한 요소이다. 이때 각 분야의 수요패턴을 고려한 적절한 모델을 적용하는 것이 중요하다. 전통적으로 쓰이는 시계열모델이나 회귀모델로도 비대해진 실제 데이터의 복잡한 비선형적인 패턴을 분석할 수 있다. 그러나 다양한 비선형 모델들 중에서 적절한 모델을 선택하는 것은 사전 지식 없이는 어려운 일이다. 최근에는 인공지능 기반의 기법들인 머신러닝이나 딥러닝 기법을 중심으로 이루어진 연구들이 이를 극복할 수 있음을 증명하고 있다. 뿐만 아니라 정형데이터와 이미지나 텍스트의 비정형 데이터 분석을 통한 수요예측도 높은 정확도를 갖춘 결과를 보이고 있다. 따라서 본 연구에서는 수요예측이 비교적 활발하게 일어나는 중요한 분야들을 나누어 설명하였다. 그리고 각 분야별로 갖는 특징적인 성격을 고려한 인공지능 기반의 수요예측 기법에 대해 머신러닝과 딥러닝 기법으로 나누어 소개하였다.

목차

Abstract
1. 서론
2. 수요예측모델의 적용 분야
3. 머신러닝 기반 수요예측 기법
4. 딥러닝 기반 수요예측 기법
5. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440696