메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배두람 (중앙대학교) 성병찬 (중앙대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제32권 제6호
발행연도
2019.12
수록면
851 - 865 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
하나의 시계열 자료에서 다양한 특징을 발견하는 일은 간단한 문제가 아니다. 본 논문에서는 하나의 시계열 자료에서 복수의 패턴을 찾아내어 예측 정확도를 높이는 방식인 다중 결합 예측 알고리즘을 소개한다. 이 알고리즘은 시간적 결합과 예측값 조합의 개념을 사용한다. 시간적 결합 방식을 통해, 하나의 시계열 자료에서 여러 개의 시계열 자료를 생성할 수 있으며, 각각의 자료는 별도의 특성을 가지게 된다. 여러 개의 시계열 자료에서 다양한 특성을 추출하기 위하여 지수평활법을 사용하고 시계열 요소들 및 이들의 예측값을 계산한다. 마지막 단계에서 시계열 요소 별로 예측값을 혼합 한 후, 각 시계열 요소들의 조합값을 더하여 최종 예측값을 만든다. 실증 분석으로 국내 교통사고 발생 건수를 예측한다. 분석 결과, 기존의 다른 예측 방식보다 예측 성능이 우수함을 확인할 수 있다.

목차

Abstract
1. 서론
2. 다중 결합 예측 알고리즘
3. 실증분석
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001440712