메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vivian Ukamaka Ihekoronye (Kumoh National Institute of Technology) Cosmas Ifeanyi Nwakanma (Kumoh National Institute of Technology) Dong-Seong Kim (Kumoh National Institute of Technology) Jae-Min Lee (Kumoh National Institute of Technology)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제48권 제6호
발행연도
2023.6
수록면
648 - 668 (21page)
DOI
10.7840/kics.2023.48.6.648

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In federated learning, the synchronous approach employed by the aggregating algorithm in the federal server, such as federated averaging (FedAVG), introduces high network communication costs, thus rendering it unsuitable for securing a network of unmanned aerial vehicles. This approach impedes the convergence speed of the global model and degrades its performance by increasing the number of participants. This study proposes a novel optimized aggregating algorithm called delay-aware truncated accuracy-(DATA)-based FedAVG. DATA-FedAVG is robust to the contingencies of straggling edge servers/clients (owing to network connectivity issues and system heterogeneity) and adaptively selects the fraction of clients whose model parameters are to be utilized in building the global model, thus optimally detecting intrusions in the network. In addition, the truncated client selection mechanism applied by DATA-FedAVG allows only clients with high-accuracy contributions to participate in both local training and federal updates. Extensive simulation experiments performed with a cybersecurity dataset validate the high performance of the proposed model and its reliability in accurately detecting attacks within an almost 75% reduced communication cost, while improving the performance of the intrusion detection model in terms of the average accuracy, recall, precision, and F1-score by 2%, 3%, 3%, and 3%, respectively.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Background of Study and Related Works
Ⅲ. System Model and Implementation
Ⅳ. Result Discussion and Performance Evaluation
Ⅴ. Conclusion
References

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-567-001540727