메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이현우 (호서대학교) 한태현 (호서대학교) 박영지 (호서대학교) 이태진 (호서대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제3호
발행연도
2023.6
수록면
411 - 425 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오늘날 AI(Artificial Intelligence) 기술은 다양한 분야에서 활용 목적에 맞게 분류, 회기 작업을 수행하며 광범위하게 활용되고 있으며, 연구 또한 활발하게 진행 중인 분야이다. 특히 보안 분야에서는 예기치 않는 위협을 탐지해야 하며, 모델 훈련과정에 알려진 위협 정보를 추가하지 않아도 위협을 탐지할 수 있는 비 지도학습 기반의 이상 탐지 기법이 유망한 방법이다. 하지만 AI 판단에 대한 해석 가능성을 제공하는 선행 연구 대부분은 지도학습을 대상으로 설계되었기에 학습 방법이 근본적으로 다른 비 지도학습 모델에 적용하기는 어려우며, Vision 중심의 AI 매커니즘 해석연구들은 이미지로 표현되지 않는 보안 분야에 적용하기에 적합하지 않다. 따라서 본 논문에서는 침해 공격의 원본인 최적화 Reference를 탐색하고 이와 비교함으로써 탐지된 이상에 대한 해석 가능성을 제공하는 기법을 활용한다. 본 논문에서는 산출된 Reference를 기반으로 실존 데이터에서 가장 가까운 데이터를 탐색하는 로직을 추가 제안함으로써 실존 데이터를 기반으로 이상 징후에 대한 더욱 직관적인 해석을 제공하고 보안 분야에서의 효과적인 이상 탐지모델 활용을 도모하고자 한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 모델
IV. 실험 결과
V. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001475809