메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현규 (Sahmyook University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제7호(통권 제232호)
발행연도
2023.7
수록면
19 - 27 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소셜 리뷰를 수집하는 과정에서 주어진 검색어와 상관없는 노이즈 리뷰가 검색 결과에 다수 포함될 수 있으며, 이들을 필터링하기 위해 기계 학습이 이용될 수 있다. 그러나 분석하고자 하는 대상의 리뷰 수가 부족한 경우, 학습 데이터 부족으로 인한 정확도 저하 문제가 발생할 수 있다. 본 논문에서는 리뷰 수가 부족한 플레이스를 대상으로 노이즈 리뷰 필터링의 정확도를 높이기 위한 지도 학습 방법을 소개한다. 제안 방법에서는 개별 플레이스 단위로 학습을 수행하지 않고, 특성이 유사한 여러 플레이스를 그룹으로 묶어 학습을 수행한다. 학습을 통해 얻은 분류기는 그룹에 속한 임의의 플레이스에 공통으로 적용함으로써 학습 데이터 부족 문제를 해결하고자 하였다. 제안 방법의 검증을 위해, LSTM과 BERT를 이용하여 노이즈 리뷰 필터링 모델을 구현하고, 온라인에서 수집된 실제 데이터를 활용한 실험을 통해 필터링 정확도를 체크하였다. 실험 결과, 제안 방법의 정확도는 평균 92.4% 수준이었으며, 리뷰 수가 100개 미만인 플레이스를 대상으로 할 경우 87.5%의 정확도를 제공하였다.

목차

Abstract
요약
I. Introduction
II. Related Work
III. Experimental Settings
IV. Experimental Results
V. Conclusion and Future Work
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0