메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장진혁 (한양대학교) 이은수 (한양대학교 에리카캠퍼스)
저널정보
전력전자학회 전력전자학회논문지 전력전자학회 논문지 제28권 제4호
발행연도
2023.8
수록면
255 - 262 (8page)
DOI
10.6113/TKPE.2023.28.4.255

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study proposes a method for finding the optimal number of turns in an IPT for maximum power efficiency by using a deep Q-learning network based on a reinforcement learning (RL) algorithm. Obtaining the optimal number of turns for a transmitter (Tx) and receiver (Rx) for satisfactory operation and maximum power efficiency is nearly impossible; thus, most Tx and Rx are normally wound until the coils occupy the cores. Moreover, iteratively simulating all the existing combinations of Tx and Rx coil windings to derive the maximum power efficiency will require a considerable amount of time. To shorten the computation time needed to determine the number of coil turns to get the highest power efficiency, the proposed method uses the RL algorithm to select the optimal number of coil turns with a high Q-value through the ε-greedy turn selection process. After a few neural network system episodes, the proposed algorithm can reach the expected maximum power efficiency after the simulation of only 20% of all the possible combinations. The proposed RL algorithm is evaluated through FEM simulation analysis, which shows that the optimal number of turns for various WPT cases with different loads can be determined rapidly.

목차

Abstract
1. 서론
2. IPT 코일 모델링 및 알고리즘 설계
3. 시뮬레이션 검증
4. 실험을 통한 성능 검증
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0