메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이수진 (덕성여자대학교) 강지헌 (덕성여자대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제29권 제9호
발행연도
2023.9
수록면
711 - 716 (6page)
DOI
10.5302/J.ICROS.2023.23.0096

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper introduces a lightweight deep learning model for human-hand-gesture recognition, leveraging point cloud data acquired from a mmWave radar. The proposed 2D projection method can be applied for the preprocessing of input data for lightweight deep learning models by effectively preserving the spatial and coordinate information of each point within the 3D voxel point cloud. In addition, we proposed a 2D-CNN-TCN deep learning model that significantly reduces the number of learnable parameters while maintaining or improving the accuracy of hand-gesture recognition. The mmWave radar sensor module used in this study was IWR6843AoPEVM from Texas Instruments, and a comprehensive dataset consisting of nine distinct hand gestures was collected, with each gesture captured over a duration of 20–25 min, resulting in a total collection time of 190 min. The proposed model was trained and evaluated on a general-purpose PC. The proposed 2D-CNN-TCN model was compared to the 3D-CNN-LSTM model to reflect the 3D voxel input and time-series characteristics. The performance evaluation demonstrated that the performance of the proposed model was 1.3% enhanced with respect to the 3D-CNN-LSTM model, resulting in a recognition accuracy of 95.06% for the proposed model. Moreover, the proposed model achieved a 5.5% reduction in the number of model parameters with respect to the 3D-CNN-LSTM model. Furthermore, the lightweight deep learning model was successfully deployed as an Android application, and the usability of the model was verified through real-time hand-gesture recognition.

목차

Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 데이터 수집 및 전처리
Ⅳ. 손동작 인식 경량화 모델
Ⅴ. 실험 및 검증
Ⅵ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-002024325