메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Misun (University of Seoul) Choi, Hyun-Sang (Korea Institute of Civil Engineering and Building Technology) Lee, Jiyeong (University of Seoul)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제41권 제5호
발행연도
2023.10
수록면
367 - 382 (16page)
DOI
10.7848/ksgpc.2023.41.5.367

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
People spend most of their time indoors. Therefore, indoor spatial information is vital for leading a safe and high-quality life. Nowadays, as digital twins and smart cities become popular, various fields are trying to build indoor spatial information to simulate disaster or terrorist situations in advance and find countermeasures or to provide efficient routes and query services to users. There are various methods for visually modeling indoor spaces, but recently, modeling using image data that are efficient in economic feasibility and usability has been increasing interest. However, since image data does not contain geometric or semantic information, there are limitations in providing image-based indoor spatial information services. In order to provide services such as routing, spatial or non-spatial queries, and object identification, these services must use topology data in conjunction with image data. Multiple studies have proposed methodologies to link image and topology data, but existing studies have limitations in requiring external reference data or too much manual work. This study aims to overcome the limitations of previous studies and effectively construct indoor spatial information by establishing relationships between image data and generating network-based topology data from the image dataset. Accordingly, we present a series of methodologies to automatically create an NRS (Node-Relation Structure) dataset using an omnidirectional image dataset. Specifically, we present methods to acquire an image dataset, detect object space, and generate nodes and edges using image and object space data. The final output of this study is NRS data consisting of nodes and edges.

목차

Abstract
1. Introduction
2. Related Works
3. Methodology
4. Implementation
5. Conclusion
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088339953