메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍영범 (고려사이버대학교) 최종두 (고려사이버대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第48卷 第4號
발행연도
2023.11
수록면
1 - 21 (21page)
DOI
10.7737/JKORMS.2023.48.4.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, an experiment was conducted using the closing price of the KOSPI index to improve prediction performance based on time series features. Denoising and prediction were performanced based on the time series features using the time series decomposition method and seven types of wavelets. And based on time-series cross-validation, the performance and evaluation of prediction were measured by averaging the measurements by interval. In order to improve the performance of prediction by convergence and linear combination of two different models, simple average and weight estimation methods were compared. Based on this, the ridge regression weight estimation method was selected, and the comparison target model and prediction error were measured, and then the independent sample t-test was conducted. Looking at the results of the empirical analysis, the individual model and the linear combination model produced statistically significant results with respect to the comparison target model(α=0.05). In this study, the superiority of time series element decomposition based on time series features, seven types of discrete wavelet transformation processes, cross-validation, and method of linear combination of different models was confirmed. In particular, the ARIMA individual model showed better prediction performance than the bidirectional LSTM model.

목차

Abstract
1. 서론
2. 시계열 예측 현황
3. 분석모형
4. 분석결과
5. 결론 및 시사점
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088465654