메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
변진모 (Korea Bible University) 도인실 (Ewha Womans University) 양단아 (Korea Bible University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제3호(통권 제240호)
발행연도
2024.3
수록면
11 - 20 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AI(Artificial Intelligence)의 다양한 모델 중 생성 모델, 특히 GAN(Generative Adversarial Network)은 이미지 처리, 밀도 추정, 스타일 전이 등 다양한 응용 분야에서 성공을 거두었다. 이러한 GAN은 CGAN(Conditional GAN), CycleGAN, BigGAN 등의 방식으로 확장 및 개선되었지만 재난 시뮬레이션, 의료 분야, 도시 계획 등 특정 분야에서는 데이터 부족과 불안정한 학습에 의한 이미지 왜곡 문제로 실제 시스템 적용에 문제가 되고 있다. 본 논문에서는 클래스 항목을 판별하는 ACGAN(Auxiliary Classifier GAN) 구조를 기반으로 기존 PGGAN(Progressive Growing of GAN)의 점진적 학습 방식을 활용한 새로운 점진적 단계의 학습 방법론 PST(Progressive Step Training)를 제안한다. PST 모델은 기존 방법 대비 70.82% 빠른 안정화, 51.3% 낮은 표준 편차, 후반 고해상도의 안정적 손실값 수렴 그리고 94.6% 빠른 손실 감소를 달성한다.

목차

Abstract
요약
I. Introduction
II. Related works
III. Preliminaries
IV. The Proposed Scheme
V. Evaluation
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0