메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김대건 (Kookmin University) 김남규 (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제3호(통권 제240호)
발행연도
2024.3
수록면
43 - 54 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 언어모델을 활용하기 위한 연구가 활발히 이루어지며, 큰 규모의 언어모델이 다양한 과제에서 혁신적인 성과를 달성하고 있다. 하지만 실제 현장은 거대 언어모델 활용에 필요한 자원과 비용이 한정적이라는 한계를 접하면서, 최근에는 주어진 자원 내에서 모델을 효과적으로 활용할 수 있는 방법에 주목하고 있다. 대표적으로 학습 데이터를 난이도에 따라 구분한 뒤 순차적으로 학습하는 방법론인 커리큘럼 러닝이 주목받고 있지만, 난이도를 측정하는 방법이 복잡하거나 범용적이지 않다는 한계를 지닌다. 따라서, 본 연구에서는 신뢰할 수 있는 사전 정보를 통해 데이터의 학습 난이도를 측정하고, 이를 다양한 과제에 쉽게 활용할 수 있는 데이터 이질성 기반 커리큘럼 러닝 방법론을 제안한다. 제안 방법론의 성능 평가를 위해 국가 R&D 과제 전문 문서 중 정보통신 분야 전문 문서 5,000건, 보건의료전문 문서 데이터 4,917건을 적용하여 실험을 수행한 결과, 제안 방법론이 LoRA 미세조정과 전체 미세조정 모두에서 전통적인 미세조정에 비해 분류 정확도 측면에서 우수한 성능을 나타냄을 확인했다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. Proposed Method
IV. Experiment
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0