메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김혜영 (성균관대학교) 윤민철 (성균관대학교) 이종욱 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.51 No.4
발행연도
2024.4
수록면
352 - 361 (10page)
DOI
10.5626/JOK.2024.51.4.352

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
순차적 추천 시스템은 사용자 로그로부터 관심사를 추출하고 이를 바탕으로 사용자가 다음에 선호할만한 항목을 추천한다. SASRec과 BERT4Rec은 대표적인 순차적 추천 모델로 널리 활용되고 있다. 기존 연구들은 두 모델을 베이스라인으로 다양한 연구에 활용하고 있지만, 두 모델은 실험 환경 차이로 인해 일관된 성능을 보이지 않는다. 본 논문에서는 여덟 가지 대표적 순차적 추천 데이터셋에서 SASRec과 BERT4Rec의 성능을 비교 및 분석하여 검증한다. 이를 통해, 사용자-항목 상호작용 수가 BERT4Rec 학습에 가장 큰 영향을 미치며, 결국 이는 두 모델의 성능 차이로 이어진다는 사실을 관찰하였다. 더 나아가, 본 연구는 순차적 추천 환경에서 널리 활용되는 두 학습 방법 역시 인기도 편향과 시퀀스 길이에 따라 다른 효과를 보일 수 있음을 보인다. 이를 통해, 데이터셋 특성을 고려하는 것이 추천 성능 개선을 위해 필수적임을 강조한다.

목차

요약
Abstract
1. 서론
2. 문제 정의
3. 실험
4. 추천 성능 개선 방법
5. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0