메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이서현 (건양대학교) 장윤성 (건양대학교) 이현주 (건양대학교) 태기식 (건양대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.41 No.6
발행연도
2024.6
수록면
481 - 488 (8page)
DOI
10.7736/JKSPE.024.040

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Brain-computer interface (BCI) is a technology used in various fields to analyze electroencephalography (EEG) signals to recognize an individual"s intention or state and control a computer or machine. However, most of the research on BCI is on motor imagery, and research on active movement is concentrated on upper limb movement. In the case of lower limb movement, most of the research is on the static state or single movements. Therefore, in this research, we developed a deep-learning model for classifying walking behavior(1: walking, 2: upstairs, 3: downstairs) based on EEG signals in a dynamic environment to verify the possibility of classifying EEG signals in a dynamic state. We developed a model that combined a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). The model obtained an average recognition performance of 82.01%, with an average accuracy of 93.77% for walking, 76.52% for upstairs, and 75.75% for downstairs. It is anticipated that various robotic devices aimed at assisting people with disabilities and the elderly could be designed in the future with multiple features, such as human-robot interaction, object manipulation, and path-planning utilizing BCI for control.

목차

1. 서론
2. 연구 방법
3. 연구결과
4. 고찰 및 결론
REFERENCES

참고문헌 (24)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0