메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김승민 (숭실대학교) 박소희 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제34권 제3호
발행연도
2024.6
수록면
439 - 449 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 음성 생성 기술의 급격한 발전으로, 텍스트만으로도 자연스러운 음성 합성이 가능해졌다. 이러한 발전은 타인의 음성을 생성하여 범죄에 이용하는 보이스피싱과 같은 악용 사례를 증가시키는 결과를 낳고 있다. 음성 생성 여부를 탐지하는 모델은 많이 개발되고 있으며, 일반적으로 음성의 특징을 추출하고 이러한 특징을 기반으로 음성 생성 여부를 탐지한다. 본 논문은 생성 음성으로 인한 악용 사례에 대응하기 위해 새로운 음성 특징 추출 모델을 제안한다. 오디오를 입력으로 받는 딥러닝 기반 오디오 코덱 모델과 사전 학습된 자연어 처리 모델인 BERT를 사용하여 새로운 음성 특징 추출 모델을 제안하였다. 본 논문이 제안한 음성 특징 추출 모델이 음성 탐지에 적합한지 확인하기 위해 추출된 특징을 활용하여 4가지 생성 음성 탐지 모델을 만들어 성능평가를 진행하였다. 성능 비교를 위해 기존 논문에서 제안한 Deepfeature 기반의 음성 탐지 모델 3개와 그 외 모델과 정확도 및 EER을 비교하였다. 제안한 모델은 88.08%로 기존 모델보다 높은 정확도와 11.79%의 낮은 EER을 보였다. 이를 통해 본 논문에서 제안한 음성 특징 추출 방법이 생성 음성과 실제 음성을 판별하는 효과적인 도구로 사용될 수 있음을 확인하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 모델
IV. 실험 및 실험 결과
V. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089930641