메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
나종호 (한국건설기술연구원) 공준호 (한국건설기술연구원) 신휴성 (한국건설기술연구원) 윤일동 (한국외국어대학교)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제34권 제3호(통권 제170호)
발행연도
2024.6
수록면
218 - 230 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 건설현장의 안전사고 문제를 해결하기 위해 컴퓨터 비전 기술을 활용한 안전관리에 관한 연구를 많이 수행하고 있다. 최근 딥러닝 기반 객체 인식 및 영역 분할 연구에서 앵커 박스 파라미터를 사용하고 있다. 일관적인 정확도를 확보하기 위하여 학습 과정에서 앵커 박스 파라미터의 최적화가 중요하다. 앵커 박스 관련 파라미터는 일반적으로 학습자의 휴리스틱 방법으로 모양과 크기를 고정하여 학습을 수행하고 있고, 파라미터는 단일로 구성된다. 하지만 파라미터는 객체 종류와 객체 크기에 따라 민감하고 수가 증가하면 단일 파라미터로 데이터의 모든 특성을 반영하는데 한계가 발생한다. 따라서 본 논문은 분할학습을 통해 최적화된 다중 파라미터를 적용하는 방법을 제안하여 단일 파라미터로 모든 객체의 특성을 반영하기 어려운 문제를 해결하고자 한다. 통합 데이터를 객체 크기, 객체 수, 객체의 형상에 따라 효율적으로 분할하는 기준을 정립하였으며, 최종으로 통합 학습과 분할 학습 방법의 성능 비교를 통해 제안한 학습 방법의 효과를 검증하였다.

목차

ABSTRACT
초록
1. 서론
2. 딥러닝 기반의 컴퓨터 비전 프로세스
3. 실험 방법
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090045251